Composite hollow insulators - Pressurized and unpressurized insulators for use in electrical equipment with AC rated voltage greater than 1 000 V AC and D.C. voltage greater than 1500V - Definitions, test methods, acceptance criteria and design recommendations

This International Standard applies to composite hollow insulators consisting of a load-bearing insulating tube made of resin impregnated fibres, a housing (outside the insulating tube) made of elastomeric material (for example silicone or ethylene-propylene) and metal fixing devices at the ends of the insulating tube. Composite hollow insulators as defined in this standard are intended for general use (unpressurized) or for use with a permanent gas pressure (pressurized). They are intended for use in both outdoor and indoor electrical equipment operating on alternating current with a rated voltage greater than 1 000 V a.c. and a frequency not greater than 100 Hz or for use in direct current equipment with a rated voltage greater than 1 500 V d.c. The object of this standard is: - to define the terms used; - to prescribe test methods; - to prescribe acceptance criteria. Hollow insulators are integrated into electrical equipment which is electrically type tested as required by the applicable equipment standard. So, it is not the object of this standard to prescribe dielectric type tests because the withstand voltages and flashover behaviour are not characteristics of the hollow insulator itself but of the apparatus of which it ultimately forms a part. All the tests in this standard, apart from the thermal-mechanical test, are performed at normal ambient temperature. This standard does not prescribe tests that may be characteristic of the apparatus of which the hollow insulator ultimately forms a part. Composite hollow insulators are intended for use in electrical equipment, such as, but not limited to: - HV circuit-breakers, - switch-disconnectors, - disconnectors, - station posts, - disconnecting circuit breakers, - earthing switches, - instrument- and power transformers, - bushings, - cable terminations. Additional testing defined by the relevant IEC equipment standard may be required.
ΚΩΔΙΚΟΣ ΠΡΟΪΟΝΤΟΣ: CYS EN IEC 61462:2023
€92.00
This International Standard applies to composite hollow insulators consisting of a load-bearing insulating tube made of resin impregnated fibres, a housing (outside the insulating tube) made of elastomeric material (for example silicone or ethylene-propylene) and metal fixing devices at the ends of the insulating tube. Composite hollow insulators as defined in this standard are intended for general use (unpressurized) or for use with a permanent gas pressure (pressurized). They are intended for use in both outdoor and indoor electrical equipment operating on alternating current with a rated voltage greater than 1 000 V a.c. and a frequency not greater than 100 Hz or for use in direct current equipment with a rated voltage greater than 1 500 V d.c. The object of this standard is: - to define the terms used; - to prescribe test methods; - to prescribe acceptance criteria. Hollow insulators are integrated into electrical equipment which is electrically type tested as required by the applicable equipment standard. So, it is not the object of this standard to prescribe dielectric type tests because the withstand voltages and flashover behaviour are not characteristics of the hollow insulator itself but of the apparatus of which it ultimately forms a part. All the tests in this standard, apart from the thermal-mechanical test, are performed at normal ambient temperature. This standard does not prescribe tests that may be characteristic of the apparatus of which the hollow insulator ultimately forms a part. Composite hollow insulators are intended for use in electrical equipment, such as, but not limited to: - HV circuit-breakers, - switch-disconnectors, - disconnectors, - station posts, - disconnecting circuit breakers, - earthing switches, - instrument- and power transformers, - bushings, - cable terminations. Additional testing defined by the relevant IEC equipment standard may be required.